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ABSTRACT
After putting forward some evidence of hypobaric hypoxia as a
particular stimulus causing systemic, tissue and cellular chal-
lenging strains, the present short review is focused on the cur-
rent findings relating the reasoning of increased tissue genera-
tion of reactive oxygen and nitrogen species (RONS) when
humans and animals organisms are exposed to high-altitude
environments. In contrast to earlier concepts, hypobaric hypox-
ia-induced decreased physiological oxygen availability seems to
be a prompt condition to cellular loss of redox homeostasis
resulting in increased oxidative stress, which does not further
augment upon reoxygenation. The apparently paradoxical con-
dition of hypoxia-induced free radical production is regulated
by very particular and specific cellular mechanisms, being mito-
chondria special sources and targets of RONS as well as critical
organelles related to cellular death mediated by apoptosis. 
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RESUMO
Hipóxia de altitude. 
Um estímulo indutor de alterações na homeostasia redox
Após considerar evidências da hipoxia hipobárica enquanto um estímu-
lo particular indutor de alterações deletérias a nível sistémico, tecidual
e celular, a presente breve revisão focar-se-á sobre os principais mecanis-
mos associados à produção adicional de espécies reactivas de oxigénio e
nitrogénio (ERON) em humanos e animais submetidos a condições
ambientais de hipóxia. Em oposição aos conceitos pioneiros, a diminui-
ção da disponibilidade de oxigénio que se verifica em condições de hipo-
xia hipobárica é uma condição favorável à perda da homeostasia redox
celular resultando num incremento do stress oxidativo, o qual não é
agravado após períodos de reoxigenação. Esta aparente condição para-
doxal de geração adicional de radicais livres é regulada por mecanismos
celulares específicos, sendo as mitocôndrias fontes e simultaneamente
alvos das ERON, bem como organelos críticos associados à morte celu-
lar mediada por apoptose.

Palavras-chave: hipoxia, radicais livres, lesão oxidativa, mitocôn-
drias, apoptose
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1. INTRODUCTION
Oxygen deprivation, usually known as hypoxia is a
constant threat to the animal kingdom. Acute or
chronic exposure to conditions of high-altitude
hypoxia has been considered an important challenge
for the organism compromising body functioning,
including cardiorespiratory, endocrine, metabolic,
nutritional and thermal homeostasis(14, 38, 41, 46, 47, 56,

79, 94, 103, 113). In the last years, evidence of systemic
and local oxidative stress and damage, resulting
from a wide imbalance between oxidant production
and the antioxidant capacity, has also been reported
during and after hypoxia exposure. Actually, under
several distinct set up conditions conducted with
humans and animals, data have revealed increased
free radical production and signs of oxidative dam-
age to lipids, proteins and DNA in several tissues.
The present short review focuses on the effects of
hypoxia on free radical production and on related
disturbances of redox homeostasis. The impact of
reoxygenation upon hypoxia, the main mechanisms
behind RONS production in oxygen-deprived envi-
ronments with particular emphasis on mitochondria
both as source and target of free radical as well as
the role of acclimatization on hypoxia-related oxida-
tive deleterious effects will also be discussed. 

2. HYPOBARIC HYPOXIA. 
A GREAT SYSTEMIC AND TISSUE CHALLENGE 
High-altitude exposure has been considered an
important challenging strain for the organism com-
promising the homeostasis of several physiological
features such as cardiorespiratory, endocrine, meta-
bolic, nutritional and thermal(14, 38, 41, 46, 47, 56, 79, 94, 103,

113). Actually, in addition to hypoxia associated with
the low barometric pressure, distinct environmental
stimuli are also imposed by high-altitude, including
extreme cold, temperature shifts, very low absolute
humidity, increased ultraviolet radiation, lead to an
exacerbated physiological stress(6, 51, 113, 116). 
Barometric pressure decreases in an inverse propor-
tion to altitude(117) resulting in the decrease of the
partial pressure of inspired oxygen, which affects the
“oxygen cascade” and diminishes oxygen diffusion
capacity from the atmospheric air to the lungs, blood
and tissues, i.e., inducing systemic and local oxygen
deprivation(51, 95). Dioxygen molecule is vital for

mammalian cells serving as the ending electron
acceptor in the oxidative process that mediates ener-
gy generation in mitochondria. Therefore, to coun-
teract the limit oxygen availability, a compensatory
fine tuning of the hypoxia sensing and signal trans-
duction pathways eliciting central respiratory, circu-
latory and several peripheral processes is trig-
gered(45, 46). However, depending on the severity, the
duration and the rapidity of the onset of hypoxia,
the decreased levels of oxygen might severely com-
promise body metabolism promoting reversible or
irreversible loss of tissue and cell homeostasis and
leading to organic and functional decay. Given that
even the acclimatized body remains hypoxic at cer-
tain severe altitudes(118), an organic deterioration is
a condition that is often described in animals and
humans after some time spent at severe high-alti-
tude(13, 113, 125). This deleterious organic phenome-
non is frequently attributed to distinct factors usual-
ly experienced by dwellers in high-altitude sojourns,
such as dehydration, starvation, physical exhaustion
and extreme cold(118). However, it seems that oxygen
unavailability per se, if sufficiently severe, brisk or
prolonged, plays a major role causing mental and
physical deterioration. In fact, hypoxia exposure
seems to result in significant weight loss, skeletal
muscle degradation, poor appetite, slow recovery
from fatigue, lethargy, irritability, an increasing lack
of willpower to start new tasks(1, 15, 17, 30, 50, 80, 119),
and, ultimately, in a benign illness related to neuro-
logical and respiratory symptoms that might result
in high-altitude cerebral(41) or pulmonary edema(12).
Nevertheless, despite the scientific worldwide efforts
to find out and better understand the specific mech-
anisms underlying these hypoxia-mediated deterio-
ration occurrences, there are still many doubts and
unanswered questions. 

3. REDOX CHANGES INDUCED BY HYPOXIA 
- INCREASED OXIDATIVE STRESS AND DAMAGE
Amongst many potential biological mechanisms sug-
gested to explain the different physiological con-
strains associated with high-altitude exposure,
increased cellular oxidative stress has been reported
during the last years. In fact, high-altitude hypoxia
has been associated with enhanced generation of
reactive oxygen and nitrogen-based species (RONS)
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in both animals and humans. Probably linked to an
increased production of RONS and to an inability of
the antioxidant systems to counteract RONS effects,
evidence of lipid peroxidation, protein oxidation and
oxidative DNA damage have been described in
humans exposed to altitude environments(7, 66, 77, 87).
It is important to note that in high-altitude other
factors besides hypoxia, such as intense UV radia-
tion, brisk air temperature variations and physical
activity may also be related to RONS formation lead-
ing to enhanced oxidative stress(105). For example,
physical activity, such as that associated to moun-
taineering itself, could be an exacerbating factor of
the oxidative stress and damage observed in many
climbers and high-altitude dwellers.
Attempting to emphasize the role of hypoxia, a
number of acute, chronic and intermittent hypoxia
studies with rats(22, 97, 106) and humans(7, 9, 54) have
been conducted in both hypobaric and normobaric
conditions confirming high-altitude hypoxia per se as
an independent modulator of cell and tissue redox
status. Data from Magalhães and co-workers in
humans and rats, both in plasma(69, 73) and skeletal
muscle(70-72), are consistent with others reporting
increased oxidative damage and an inability of the
antioxidant system to cope with the increased pro-
duction of RONS under hypoxia(7, 23, 52, 54, 66, 77, 89, 98,

106). Increased lipid peroxidation measured by thio-
barbituric acid reactive substances (TBARS) or mal-
ondialdehyde (MDA), and enhanced protein oxida-
tion estimated by carbonyl derivatives groups or
sulfhydryl groups (SH) were found at distinct levels
of cell organization(69-73). Moreover, DNA damage
expressed as increased strand breaks and endonucle-
ase III-sensitive sites was described  in human skele-
tal muscle after 2 weeks of hypoxia(107). 
This apparent physiological paradox was confirmed
by in vivo direct measurements and in vitro assay of
reactive oxygen species (ROS) production in differ-
ent tissues and experimental conditions of hypoxia.
Using electron paramagnetic resonance spectroscopy,
Bailey et al.(10) identified a clear increase in blood
and cerebral spinal fluid concentration of ROS in
humans exposed for 18h to 12% of oxygen.
Additionally, rats exposed to 10-min of normobaric
hypoxia (10% O2) revealed an increase in ROS-

dependent dihydrorhodamine 123 fluorescence sig-
nal in mesenteric circulation by nearly 200% above
control values (120). In isolated rat diaphragm strips
loaded with dihydrofluorescein-DA, Zuo et al.(127)

showed that the transition to low intracellular oxy-
gen pressure prompt a burst of intracellular ROS.
Vanden Hoek et al.(109) and Damerau et al.(28) also
observed increased ROS production during hypoxia
in cardiac myocytes. These data are consistent with
earlier observations by Park et al.(84) using electron
spin resonance (ESR) in intact hearts during
ischemia and Kevin et al.(58) using redox sensitive flu-
orescent probes in the intact heart. Moreover,
Duranteau et al.(33) showed that the extent of
increase in dichlorofluorescin fluorescence in car-
diomyocytes was proportional to the severity of
hypoxia. These responses were attenuated by
inhibitors that block the generation of ubiquinol at
mitochondrial complex I and II, which suggest that
hypoxia increases ROS production at complex III of
mitochondrial electron transport chain. 
In accordance, data from distinct studies dealing
with antioxidants in humans(8, 23, 87, 102) and rats(52,

70, 97, 98) submitted to hypoxia clearly demonstrated
benefits of such supplementation against oxidative
stress and damage. Additionally, RONS produced in
skeletal muscle during hypoxia contribute to
decreased force production and both intracellular
and extracellular antioxidants markedly attenuated
the decline and loss of contractile function observed
during hypoxia(76, 122).
Similar to other studies dealing with systemic(reviewed

in 31, 67) or local(78, 88, 109) hypoxic or anoxic patho-
physiological states, one can argue that hypoxia truly
engenders a biological paradox, i.e., too less mole-
cules of stable oxygen seem to generate more mole-
cules of unstable and reactive oxygen with systemic
and tissue deleterious consequences to organism.
Therefore, although the use of oxygen as metabolic
fuel allows a vital and attractive harvest of energy-
rich phosphates per molecule of glucose, amino-
acids or fatty acids, it seems that in oxygen
depressed environments, such as high-altitude, a sig-
nificant fraction of the oxygen utilized by the body
undergoes a univalent reduction, resulting in the
formation of RONS(6, 11).

Hypoxia-induced oxidative stress
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4. SUB-CELLULAR SITES AND MECHANISMS OF FREE
RADICAL GENERATION IN HYPOXIC TISSUES 
Despite the considerations on hypoxia-induced
oxidative stress and damage, many important ques-
tions concerning the possible mechanisms involved
in this exceeded production of RONS under hypoxia
remain to be adequately addressed. Currently, work
on this research topic suggests that some of the
mechanisms able to explain, at least in part, the
increased RONS production in humans and rats sub-
mitted to hypoxia are: (i) a rapid microvascular
inflammatory response resulting in increased forma-
tion of the pro-inflammatory mediator leukotriene
B4 and in leukocyte endothelium adherence and
migration into perivascular space via nitric oxide
depletion(107, 120, 121); (ii) the increased xanthine oxi-
dase activity, resulting from cellular energetic and
metabolic inefficiency and excessive calcium lev-
els(49); (iii) the increased spontaneous epinephrine
oxidation(2, 55); (iv) the enhanced nitric oxide (NO.)
production stimulated by elevated levels of cytosolic
calcium(42) or by increased activity of constitutive
NO synthase(123) occurring during hypoxia, and (v)
the accumulation of reduced equivalents in the elec-
tron transport chain (ETC) – the so-called condition
of reductive stress(33, 57). 
Despite the relevance of all the other above-men-
tioned mechanisms, this section will focus in partic-
ular on mitochondria as a RONS source and target
during hypoxic conditions.
Mitochondria produce the energy required to drive
the endergonic and vital biochemical processes of
cell life through a rather well-coupled mechanism of
oxidative phosphorylation(16). Additionally, mito-
chondria are also critical organelles in the modula-
tion of cellular osmotic regulation, redox status and
pH control, signal transduction, and in the establish-
ment of cellular calcium homeostasis(112).
Nonetheless, mitochondria respiratory function has
been considered a relevant mechanism involved in
cellular ROS production under conditions of oxygen
deprivation(64, 85, 108). In such hypoxic conditions,
reducing equivalents seem to accumulate through-
out the mitochondria ETC due to an inefficacy to
transport electrons to oxygen. Actually, a hypoxia-
induced decrease in Vmax of cytochrome c oxidase
seems to favour an increase in the reductive state of

mitochondrial electron carriers upstream of
cytochrome aa3(33) favoring electron leakage and
increased univalent reduction of oxygen with forma-
tion of ROS(20, 29, 33, 57, 76, 100). Nevertheless,
cytochrome c oxidase can hardly be considered as a
prompt oxygen sensor under hypoxic conditions.
Cytochrome c oxidase in rat hepatocytes required
90–120 min under hypoxia to undergo a decrease in
Vmax(19), yet data from Chandel et al.(21) revealed
that cells displayed hypoxia-inducible factor-1alpha
(HIF-1a) protein accumulation, a key regulator of
transcriptional responses to hypoxia, within 30 min.
Based on the difference between the duration of
hypoxia needed to elicit alterations in cytochrome c
oxidase Vmax and the time required to stabilize
HIF-1a, it is not credible that cytochrome c oxidase
could serve as the primary oxygen sensor in hypoxia.
Rather, it appears that mitochondrial complex III
must possess inherent sensitivity to distinct oxygen
concentrations allowing it to adjust its generation of
ROS inversely with the oxygen tension(21, 39). In fact,
mediated by some hypothetical mechanisms that
ultimately increase the transfer of an electron from
the ubisemiquinone to molecular oxygen, complex
III seems to be the primary site of ROS production
during hypoxia, and a competent cellular oxygen
sensor(for review see 40).
Depending on the severity and the duration of the
hypoxia conditions, mitochondria themselves may
also become targets from ROS resulting in the per-
oxidation of membrane lipids, protein oxidation and
DNA cleavage(25, 61, 86), which can culminate in the
down-regulation of the respiratory function(59, 90, 115),
impaired ATP synthesis (5) and, eventually, in cellu-
lar death(24, 53, 59). Data from Magalhães and cowork-
ers(70) support the role of skeletal muscle mitochon-
dria as a potential ROS source and as an oxidative
target organelle under severe but physiological
hypoxic conditions. In mice exposed to 48h of severe
hypoxia equivalent to an altitude of 8500m, skeletal
muscle mitochondria significantly increased super-
oxide radical production and protein oxidation. The
activity of the superoxide-sensitive enzyme aconitase
significantly dropped by approximately 30% in ani-
mals exposed to simulate high-altitude when com-
pared to control. Moreover, vitamin E supplementa-
tion protected mitochondria from both the over-pro-

José Magalhães, António Ascensão

4. revista (164pp):miolo  30/12/08  14:08  Page 462



Rev Port Cien Desp 8(3) 459–469 463

duction of carbonyl groups and aconitase inactiva-
tion induced by hypoxia. These results were consis-
tent with data obtained elsewhere confirming the
role of mitochondria as an important ROS source(64,

65, 108) and target(83, 124) under hypoxic conditions. 

5. HYPOXIA-INDUCED MITOCHONDRIAL DYSFUNCTION
AND INCREASES THE LEVELS OF APOPTOSIS
Under severe conditions of hypoxia, the oxidative-
mediated mitochondrial dysfunction may contribute,
at least partially, to some of the described skeletal
muscle morphological changes(for review see 18, 48),
including mitochondrial swelling, cristae degenera-
tion and relevant accumulation of lipofuscin-like pig-
ments(3, 68, 75), which have also been described in
several other tissues(62, 96, 99) as being related to
abnormal mitochondrial functionality and to cellular
death fate. Some studies reported that under condi-
tions of oxidative stress and increased cytosolic free
calcium, mitochondria function can become severely
affected(reviewed in 27). In fact, decreased activity of
some of the ETC protein complexes and/or citric
acid-cycle enzymes(124), and inner membrane phos-
phoslipid peroxidation, including cardiolipin(81, 82)

mediated by free radical oxidation seems to correlate
well with depressed mitochondrial function. In
accordance, hypoxia-induced oxidative stress signifi-
cantly impaired mitochondrial respiration as demon-
strated by decreased state 3, respiratory control ratio
and ADP/O, and by increased state 4 with both
complex I and II-linked substrates(70), which con-
tributed to decreased mitochondrial phosphorylation
efficiency and coupling between respiration and ATP
synthesis. These assumptions were confirmed by the
decreased respiratory rate in the presence of the
uncoupler CCCP (carbonyl cyanide m-chlorophenyl-
hydrazone) and by increased respiration in the pres-
ence of the ATP synthase inhibitor oligomycin.
Vitamin E supplementation was able to attenuate
most of the mitochondrial functional changes
induced by hypoxia, which further supports the
oxidative nature of mitochondrial dysfunction.
Moreover, depending on the magnitude of the insult,
alterations in mitochondrial membrane permeability
mediated by distinct aetiologies may predispose to
the activation of the intrinsic pathway of apoptotic
cell death. In fact, the dysfunction of the adenine

nucleotide translocases(44, 110) and/or the opening of
the mitochondrial permeability transition pore
(mPTP)(for refs see 26, 44, 60) might result in important
bioenergetic consequences, namely (i) the loss of
mitochondrial transmembrane potential, (ii) the
uncoupling of the respiratory chain, (iii) the
increased production of the superoxide radical, (iv)
the disturbance of mitochondrial biogenesis, (v) the
outflow of matrix calcium and glutathione, (vi) the
release of soluble intermembrane proteins, and (vii)
a burst of mitochondrial oxygen consumption,
among other effects. Eventually, this scenario of
mitochondrial dysfunction might entail a bioener-
getic collapse that can culminate in the disruption of
plasma membrane integrity (necrosis) and/or in the
activation of specific cysteine apoptogenic proteases
(caspases) that trigger the mitochondrial intrinsic
pathway of apoptosis(for review see 43, 63). In accordance,
prolonged simulated conditions of high-altitude
decreased inner and outer mice skeletal muscle
mitochondrial membrane integrity and increased
Bax/Bcl-2 ratio suggesting that severe and persistent
hypobaric hypoxia exposure predisposes skeletal
muscle to cell death(74). In clear contrast, Riva and
coworkers(92) showed an over-expression of Bax and
Bcl-2 in skeletal muscle of young rats growing under
moderate chronic hypoxia conditions (10% O2). In
this case, the graduate and less severe level of
hypoxia exposure was translated into an increase of
the Bcl-2/Bax ratio allowing a better protection
against apoptosis. In fact, no sign of apoptosis was
detected by TUNEL, annexin V-binding and DNA
electrophoresis analysis. However, the protective
effect of the acclimatization process against skeletal
muscle oxidative stress already demonstrated else-
where(71) and/or the hypoxia severity might probably
explain, at least in part, this discrepancy in the
results. In fact, recent data from molecular analysis
brought by Schroff and Chandel(104) suggest that the
outcome of the mixed signals generated by hypoxia
is determined by the level of the hypoxic stimulus.
The authors described a pathway whereby severe but
not moderate hypoxia promotes apoptosis. The anti-
apoptotic gene Mcl-1 is induced by hypoxia through
HIF-1; however, under severe hypoxia, Mcl-1 is tar-
geted for degradation by the proteasome, whereas
under mild hypoxia remains elevated favoring sur-
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vival. Nonetheless, mitochondria isolated from ven-
tricular myocytes of rats exposed to intermittent
hypoxia (6h/day at 5000m for 42 days) seem to be
more resistant to the opening of the mPTP and to
cytochrome c release after reperfusion injury(126).
Enhancement of the mitochondrial tolerance against
calcium overload, most likely through the activation
of mitochondrial ATP-sensitive potassium channels,
might underlie the protective mechanism of inter-
mittent hypoxia on cardiomyocytes submitted to
reperfusion injury.
Unfortunately, studies concerning the influence of
less severe hypoxic conditions, equivalent to those
that many humans face around the world, on muscle
mitochondrial function are still missing.
Nevertheless, data regarding the impact of such
hypoxic conditions on whole muscle tissue, blood or
plasma oxidative stress and damage markers suggest
that less intense alterations would probably occur at
mitochondrial level(74).

6. DOES REOXYGENATION UPON HYPOXIA CAUSES FURT-
HER INCREASE IN OXIDATIVE STRESS AND DAMAGE?
The injury perpetrated by the mechanism of
ischemia/reperfusion is perhaps the supreme exam-
ple of pathologic atavism in which intracellular
RONS production exceeds the cellular defenses and
can trigger massive stress and damage to the affect-
ed cells(114). In fact, while RONS may be generated
in a smaller extent during the ischemic period, far
greatest production of these compounds occurs after
reintroduction of oxygen during the period of reper-
fusion(34, 36, 111). Accordingly, ultrastructural and
metabolic cellular disturbances related with the
decreased oxygen availability during ischemia and
aggravated oxidative-mediated tissue harmful effects
during the reperfusion period have been reported in
several tissues(34, 36, 111). In fact, enhanced capillary
permeability, endothelial ROS production, and poly-
morphonuclear leukocytes mobilization with
endothelial adherence and tissue infiltration have
been described in post-ischemic reperfused tissues(4,

32, 101). 
However, despite evidence demonstrating that sys-
temic physiological hypoxia induced by real or simu-
lated high-altitude exposure exacerbate cellular
RONS production and oxidative stress, some studies

also demonstrate that, in contrast with to the model
of ischemia/reperfusion(for review see 35), the levels of
RONS production(120) and oxidative stress and dam-
age(54, 73) do not increase further during or after the
reoxygenation period subsequent to hypoxia. A
report from Magalhães and coworkers(73) revealed
that 4 hours of simulated high-altitude exposure
equivalent to 5500m significantly increased the bur-
den of oxidative stress during the hypoxic period in
humans; nevertheless, no additional signs of oxida-
tive stress or damage were observed at the end of
the pressurization/reoxygenation period. In fact,
increased levels of protein and lipid oxidation, as
well as reduced total antioxidant capacity were
observed during the hypobaric hypoxia exposure,
but no additional oxidative modifications were
found after the reoxygenation period when com-
pared with values obtained after the 4h of hypobaric
hypoxia. In conformity with this findings, data from
a study in which 8 male subjects were continuous
and gradually exposed for 31 days to a simulated
Everest ascend in a hypobaric chamber and re-pres-
surized in 2 days until sea level conditions
(Operation Everest III-Comex’97) revealed that the
conditions of oxidative stress and damage observed
during the hypoxic period were not exacerbated after
reoxygenation(54). Moreover, in a study with rats
submitted to 10-min in-vivo normobaric hypoxia
(10% O2) followed by a 10-min normoxic (21% O2)
recovery period, Wood and coworkers(120) showed an
increase in ROS-dependent dihydrorhodamine 123
fluorescence signal in mesenteric circulation by near-
ly 200% above control values during hypoxia, which
did not further increase, instead it progressively
decreased towards control, during the recovery room
air breathing period. Consistently, a report from
Risom and coworkers(91) also demonstrated that the
levels of DNA strand breaks and oxidatively dam-
aged purine bases in human mononuclear blood
cells significantly increased after 2h of hypoxia cor-
responding to 5500m above sea level, but did not
further increase after 2h of reoxygenation. 
All together, these data suggest fundamental differ-
ences in the underlying mechanisms responsible for
redox status disturbances in humans and rats during
conditions of physiological hypoxia-reoxygenation
vs. the classical model of ischemia/reperfusion.
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Actually, in clear contrast with studies dealing with
ischemia/reperfusion(for review see 34, 93, 111), in which
oxidative stress and cellular injury are severely
aggravated during reperfusion, data suggest that the
reoxygenation period does not further increase the
levels of oxidative stress and damage induced by the
previous hypoxic period. Nevertheless, data from
Gonzalez and coworkers(37) demonstrated that, in
contrast with previous reports expressed above,
humans exposed during 3 days to an altitude of
3500m revealed enhanced erythrocyte membrane
oxidative damage one day upon returning to sea
level when compared to values obtain at altitude.
Discrepancies in the timing of data collection upon
returning to sea level conditions, tissue susceptibili-
ty and the sensitivity of the different techniques are
possible explanations for these differences.
Additional studies are required to clarify this impor-
tant topic. Moreover, no data has been published
regarding the impact of this phenomenon on skeletal
muscle. Considering the heterogeneity of response
of distinct tissues to the same insult and the fact
that skeletal muscle has been considered very resist-
ant to ischemia/reperfusion, additional studies
should address the impact of hypoxia/reoxygenation
in this tissue.

7. CONCLUSION
Despite being an apparent paradox, accumulating
evidence demonstrate that oxygen deprived environ-
ments favour increased RONS generation and the
occurrence of enhanced cellular oxidative stress.
Data obtained in distinct experimental settings,
models and tissues, including skeletal muscle, have
reported unequivocal clues of RONS production by
distinct cellular sources, including by mitochondria
with consequent signs of oxidative macromolecular
damage of lipids, proteins and DNA. Nevertheless,
moderate hypoxia-induced RONS may be an adap-
tive cellular reaction to the disproportion between
oxygen supply and demand, and play a yet incom-
pletely defined role in the physiological response to
hypoxia. As an example, mitochondria are currently
considered determinant cellular hypoxic-oxygen sen-
sors contributing with RONS for cellular adaptation
depending on important redox-dependent signaling
mechanisms. On the other hand, under severe

hypoxic conditions, tissues may fail to maintain a
normal redox homeostasis, which might result in cell
dysfunction and, ultimately, in the activation of cell
death pathways.
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